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ABSTRACT

An abstract approximation framework for the solution of operator algebraic Riccati
equations is developed. The approach taken is based upon a formulation of the Riccati
equation as an abstract nonlinear operator equation on the space of Hilbert-Schmidt opera-
tors. Hilbert-Schmidt norm convergence of solutions to generic finite dimensional Galerkin
approximations to the Riccati equation to the solution of the original infinite dimensional
problem is argued. The application of the general theory is illustrated via an operator Ric-
cati equation arising in the linear-quadratic design of an optimal feedback control law for a
one dimensional heat/diffusion equation. Numerical results demonstrating the convergence
of the associated Hilbert-Schmidt kernels are included.
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ON HILBERT-SCHMIDT NORM CONVERGENCE OF
GALERKIN APPROXIMATION FOR OPERATOR

RICCATI EQUATIONS

I.G. ROSEN

Abstract. An abstract approximation framework for the solution of operator algebraic
Riccati equations is developed. The approach taken is based upon a formulation of the
Riccati equation as an abstract nonlinear operator equation on the space of Hilbert-
Schmidt operators. Hilbert-Schmidt norm convergence of solutions to generic finite
dimensional Galerl:iii approximations to the Riccati equation to the solution of the
original infinite dimensional problem is argued. The application of the general theory
is illustrated via an operator Riccati equation arising in the linear-quadratic design
of an optimal feedback control law for a one dimensional heat/diffusion equation.
Numerical results demonstrating the convergence of the associated Hilbert-Schmidt
kernels are included.

1. INTRODUCTION

In this paper we develop an abstract approximation theory for algebraic Riccati
equations on spaces of Hilbert-Schmidt operators. Our approach is based upon
Barbu's (1] formulation of a class of Riccati equations as abstract nonlinear operator
equations on a space of Hilbert-Schmidt operators. We argue that solutions to
generic finite dimensional Galerkin approximations to the Riccati equation converge
in Hilbert-Schmidt norm to the solution of the original infinite dimensional equation.

Our effort here is closely related to results in one of our earlier papers [6] wherein
we developed an approximation theory for operator Riccati differential equations
using techniques similar to those which will be employed below. Our treatments
here and in [6] differ from the standard approach to the analysis of operator Ric-
cati equation approximation in that we consider the nonlinear operator equations
directly in the space of Hilbert-Schmidt operators rather than integral equation
equivalents and their limiting properties as the time horizon tends to infinity (see,
for example, [3]). While we do in fact obtain a stronger convergence result than the
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ones yielded by the standard approach, the class of probelms to which our theory
applies is somewhat more restricted.

In section 2 we briefly outline and summarize Barbu's [1] results for opeator
algebraic Riccati equations on spaces of Hilbert-Schmidt operators. Our approxi-
mation results are then given in section 3. The convergence arguments given there
depend heavily upon a factorization result for Hilbert-Schmidt operators and its
subsequent implications regarding the convergence of Galerkin approximations. In
the fourth section we discuss the application of our results to a Riccati equation
arising in the linear-quadratic design of an optimal feedback control law for a one
dimensional heat/diffusion equation. Numerical results illustrating the convergence
of spline-based approximations are also presented.

2. OPERATOR ALGEBRAIC RICCATI EQUATIONS IN SPACES OF

HILBERT-SCHMIDT OPERATORS

A rather complete existence theory for solutions to operator algebraic Riccati
equations can be found in Barbu's book [1]. We provide a brief outline of those
results here. Barbu's theory forms the basis for the approximation and convergence
results which will be developed in the subsequent section below.

Let H be a real separable Hilbert space with inner product (., .) and associated
induced norm I" 1. Let V also be a real separable Hilbert space with inner product
< -,. > and corresponding norm 1 -I1. We assume that V is densely, continuously,
and compactly embedded in H. Indentifying H with its dual, H*, we have V -
H = H* - V* with the final embedding dense and continuous as well. If we let
11 j denote the standard operator norm on V*, then the continuity of the above
embeddings imply the existence of a constant p > 0 for which _< ,o, e V,
and IIjpII - z:pj1, V E H.

Let -y E £(VV*) denote the canonical isomorphism (Riesz map) from V onto
V*. That is, for V,, 0 f V, (yV, o) =< (p, i >, where in this case (-,-) denotes the
usual extension of the H inner product to the duality pairing between V and V*.
It follows that -- e £(V*, V) n C(H, V) is self-adjoint, positive, and compact as a
mapping from H into H. With inner product < .,. >. given by

< V0 >.=< 7Y-1V'-Y,V1 >= (V0, -p, 0¢ E V*,

V* is a Hilbert space with JII, < =' , - >., for o f V*. The mapping - 1 being
self-adjoint, positive, and compact on H yields the existence of an orthonormal
basis {ek}l= for H such that -iek = pk-2ek, k = 1,2,... with Pk > 0, k
1,2 . . follows that {plek}j= and {pkek} are orthonormal bases for V and
V* respectively.

Let HS(X,Y) denote the Hilbert space of Hilbert-Schmidt operators defincd
on the separable Hilbert space X with range in the separable Hilbert space Y.
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Let F, "HS(X,Y) and . JHs(x,Y) denote the usual Hilbert-Schmidt inner product
and corresponding induced norm on HS(X, Y). Let 7"R = HS(H, H) with [-, .+ =

I ]HS(H,H) and let V = HS(V*,H) n HS(H, V) with [-,-lv = [-,'IHS(V-,H) +
[',']HS(H,V) and 11411v = v[,]v, for 4 e V. The space V together with the
innerproduct [-, ]v is a Hilbert space. Moreover it can be argued that the inclusions
HS(V*,H) C HS(H,H) C HS(V,H) and HS(H,V) C HS(H,H) C HS(H,V*)
are dense and continuous and that HS(V*, H) and HS(V,H), and HS(H,V) and
HS(H, V*) axe dual pairs with respect to the duality pairing derived from the R"
inner product, [-, "]. Consequently we have V* = HS(V, H) + HS(H, V*), and
identifying -i with its dual, the dense and continuous embeddings V -- R"= 7" *
V*.

Let a(.,.) V x V -* R be a bounded, strongly V-elliptic bilinear form. More
precisely, we assume that there exist positive constants a and fl for which a(T, V) >-
ajIIjj 2 , v E V and la(T,O)j < 0I[T[[ {¢1j, T,4' f V. Let A c £(VV*) be the
operator defined by (AV, b) = a(V, 0), V, 0 e V. Let a*(.,.) : V x V --+ R be
the form adjoint to a(.,.). That is a*(V, 0) = a(0,V), V,4 E V. It follows that
a*(p,V) _ allw~l2,p E V and la*(p, k)l _ 011VII II4'II, v, 0 e V. Let A* f (V,V*)
be the operator defined by (A*, 4) = a*(V 4'), V, 4 E V. Then, if we define the
operators A : Dom(A) C H -- H and A* : Dom(A*) C H --+ H to be the re-
strictions of the operators A and A* to the sets Dom(A) = IV e V : AV E H)
and Dom(A*) = IV E V : A*V E H) respectively, it can be argued that A and
A* are densely defined and are H-adjoints of one another. That is (AT, 4) =

(V,AO),v E Dor(A), 4 e Dom(A*).
Define the closed convex cone C in 1H by C = {4 E HS(H, H) : D = 4*, 4 > 0}

and let 4 --- B(4) be a single valued mapping defined for every 4 e C with range
in R" which is continuous from RH into itself. (Such a mapping B can be defined via
the operational calculus for bounded linear operators by B(D) = f(4), k E C, where
f is a single valued complex function of a complex variable satisfying f(0) = 0 and
which is analytic on the nonnegative real axis (see Dunford and Schwartz, Part II
[2], Theorem XI. 6.7.7).) We assume that B is bounded and monotone on C. That
is that it maps H - bounded subsets of C into ?i - bounded subsets and that it has
the property

(2.1) [1(4)- B('),4- >0

for every D, 4I c C. We assume further that

(2.2) (I+AB3)CDC, A>0.

Let 0 e C be given, and we consider the generalized algebraic Riccati equation for
n e R given by

(2.3) A*l II HA + B(11) = 0.
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We seek a solution H E C to (2.3). We note that for n a positive integer, the

operator 8 given by 3( I) = , E C (i.e.f(z) = zn ) can be shown to satisfy the
conditions above. Indeed, boundedness follows from the esitmate JO"pn :5 ,
while monotonicity can be established via

[,D n _ -p,, _ =j, [.D"-j -l - T} XP , - > 0,
j=1

for 0, %P e C (see [9]). Finally, for %P c C and ,\ > 0 let {¢I} V1 be the orthonormal set
of eigenvectors of T with corresponding eigenvalues {ail. (The fact that % E C
implies ai >- 0, i = 1, 2,...). Then, if we let yi denote a nonnegative solution to
the equation -yi + A-!'y - ai 0 (the intermediate value theorem guarantees that

such a yi exists with 0 < i a ,) and set (D = -yi(, Vi) ', ( E H, it follows

that • e C and 4 + A4'0 = T'. This establishes (2.2). When n = 2, (2.3) becomes
the familiar quadratic Riccati equation.

Define the operator A E £(V, V*) by

AO = A*D + OPA, I E V.

It can be argued (see [1]) that A is strongly V-elliptic - that is there exists a
constant w > 0 for which

(2.4) [AID,_] _ Lo 'I I' , t eV.

If we define the subspace Dom(A) = { V' : A4' c H} then it follows (see [8])
that the operator A : Dom(A) C R" -- R" is densely defined and m-accretive in
7R. With the above definitions the problem of finding a solution to the operator
algebraic Riccati equation (2.3) becomes one of finding a solution 11 c Dom(.F) to
the abstract nonlinear operator equation in R- given by

(2.5) F(II) = 9

where O E C is given and F : Dom(.F) C R" -- 'H is the operator defined by

.F(4) = A4' + S(4') for 4' e Dom(.F) = C n Dom(A).
Using a standard fixed point argument on the closed convex subset C, Barbu [1]

argues that the equation

has a unique solution P,\ E Dorn(.F) for each A > 0 where.F,\ : Dom(.F) C R" -+ 'H is
the Yosida -like approximation to F given by .FA = A + A-'f {I - (I + AS) }. Then
using the boundedness and montonicity of B, Barbu argues further that the H\
converge in 'H as A --* 0 to an opeator H c Dom(.F) which is a solution to (2.5) (or,
equivalently, (2.3)). The strong V-ellipticity of A (i.e. (2.4)), and the monotonicity
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of 8 (i.e. (2.1)) are then used in the usual way to establish the uniqueness of II.
Note that II E Dom(.F) implies that H e C, i.e. that it is a nonnegative, self-adjoint
opeator in "R, and that II E V with AII = A*H + HA f X"/.

3. GALERKIN APPROXIMATION AND CONVERGENCE THEORY

For each n = 1,2...let Hn be a finite dimensional subspace of H with H, C V,
n=1,2,... .Let P, . H ---o H,. be the orthogonal projection of H onto Hn with
respect to the (-, .) inner product on H. We as;ume

(3.1) lir lPp - 1 = 0, yEV.

Note that assumption (3.1) implies that lim JP,, o - oI = 0, p f H, and that the
n- o

P, are uniformly bounded in the uniform operator topologies on C(H) and £(V).

Lemma 3.1 The operators Pn admit extensions, which we shall again call P,, to
idempotent, uniformly bounded operators in C(V*). Moreover, lim [JPnV - V=

0, p f V*, the V*-adjoint (i.e. the operator P,* satisfying < P,.V, 0 >.=< V, P,4' >*
V,¢ 0 V*) is given by Pn* = yP,-y', and lim OJP,* - V11.= 0, V V*.

ni 00

Proof For V E V* set Pn,, = Vpn where V, is the representer of the functional on
Hn which is the restriction of W to Hn. That is ( On, On) = (P,, ,) = (V, On),

, o Hn. It is clear that P, as given above is a well defined extension of the
orthogonal projection of H onto H, and that it is idempotent. Moreover, since
Hn C V C V*, for V E V* we may consider PnV = Vn E Hn an element in V*
via the duality pairing (PnV, 0) = (Vo,,4), 0 f V. Then for V e V*,4 E V, and
1P,. = P,,V we have (P. p, 0) = (V,,,') = (W n,Pn 0) = (P, Pn 0). Consequently for
Vc V* we have

IIP,. p - sup I(PO)I sup i(p,P.')l < IpI .IP,.l,
oe V ,PeV
-P 011!51 I1P11_<1

or 11P. 1. ___ IIP II. Thus assumption (3.1) implies that the P,, are uniformly bounded
in C(V*). (We note that alternatively the same extension of the projections P,. to
operators on V* could have been obtained by using the standard approach based
upon the density of H in V* and the usual extension construction in terms of limits.)
Now for V e H we have

< P,cP, 0 >*= (P, ,/-'0) = ((,P,--'4) = (4,'-P,-1O)
=< v,, -tP,,)-1¢ >-,

and consequently that the V*-adjoint of P, Pn, is given by Pn = yP,,J 1 . Finally,
assumption (3.1) yields

liM jjPn* -'P11. = liM llY - -v1
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= lim
n-oo

= lim _ =--' 0

for each p e V* and the lemma is proved.

Define the sequence of finite dimensional subspaces -,, n = 1,2, ... of ?" by

7-4. = {nP. : 4. e (Hn)}.

Clearly Hn finite dimensional implies that all operators in 7-4, are of finite rank and
thus that 7-4, is a subspace of both R and V. For each n = 1,2,... let C. C 1"/.
be the closed convex cone given by C. = {,Pn E 7"4. : Dn = P*,( > 0}.
Note that Cn C C,n = 1,2,... We define Galerkin approximations to the operator
.',.Fn : Dom(.Fn) C 7in + 7in, as follows:

(3.2) .Fn(DnP) = {A'nPn + B(P.Pn)}Iin, for nPn f Dom(.Fn) = Cn.

That is, for '.Pn E Cn, .Fn(4nPn) = 'nPn 'Nn where 'nPn is that element
in 7"H. (guaranteed to exist and be unique by the Riesz Representation Theorem
applied to the functional A'I.Pn + B(-.Pn) F V* restricted to a functional on the
finite dimensional Hilbert space "n) which satisfies [A'DnPn + B(-'bnPn), XnPn]h =

['I'nPn, XnPnl~i, XnPncHn-
It is of some value to note that the approximations to F given in (3.2) are the

same ones that would be obtained via the standard approach which is based upon
the replacement of the operators A and B in (2.3) by their respective Galerkin
approximations on Hn and Rn.. Indeed, for each n = 1,2,... define the operators
An e £(Hn) and Bn : C. C 7-- + 7in by Anpp. = on, where for SWn E Hn, On is that
element in Hn which satisfies (A n,Xn) = (On,Xn), Xn E Hn, and !3n(Dn Pn) =
Pn1B( nPn)Pn. From the fact that Pn is the orthogonal projection of H onto Hn
it follows that [PPn,4 n]i = [D, 'PnN for every 4 E V* and '. e 7"tn. Then, for

'nPn, 'nPn 4 7"n we have

[.Fn(.Pn), nPnW. = tAlnP. + 3(4InPn), TnPnP
= [{A'InPn + B3(-Pn)}Pn, n'.Pn1
= [A*$,.P. + nPnAPn + ( nPn)Pn, ,.Pn.]

= E {(A*.Pnek,,nPnek) + (.PnAPnek,TnP.ek)
k=1

+(3('.Pn)Pnek, nPn k)}
00

= Z {(A*4nPnek,nPnek) +(AnPnek,4',nPnek)
k=1

+(Pn3(4DnPn)Pnek, TnPnek) }
00

=, ({A $'n + nAn + Bn(4nPn) } P.e,1.P.ek),
k=1
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or,

(41,, P,)= {A',,,, + D,,.A,, + 1.('IDP.)} P,.

In the particular case when B(D) = D2, for example, the operators ., take the
form =c(1,P,) {A ±,A, + ) P".

Set E, = P,,OP, e C,, and consider the problem of finding a solution H% f C, to
the nonlinear operator equation

(3.3) .',(IJ,) = 0"

in 7-i,,. Arguments similar to those described in section 2 above yield that for each n
= 1,2,..., the equaiton (3.3) admits a unique solution 1I,, f C,,. We shall argue that
lim 11lI,, - rilyv = 0; that is, that the I-I, converge in the V-Hilbert-Schmidt norm

n1 -"oo

to the solution II to the equation (2.5) (or equivalently (2.3)). In order to do this
we shall require the following lemmas.

Lemma 3.2 If {a, }i? is an absolutely summable sequence of real numbers, then
there exist sequences {b,},=1 and {c,} 1 for which lim b, = 0, {ci}'1= is absolutely

1*- 00

summable, and ai = bici, i = 1, 2, ....

Proof Set a = , jaiI and, for j = 0,1,2,... define the nonnegative integers k3 by
i=1

k0 = 0 and for j = 1,2,... let k3 be the first index for which

kj1 "1

jai > a -
j3l

Then setting bi = 1/j and ci = ja,, for i = kj-1 + 1,...,ki, ] = 1,2,..., we have
bici = a,, i = 1,2,..., lim bi = 0, and

00 00 0

Z ciI = E E ak = Z Eak- akJ
i=1 j=1 k=kj-,+l j= k= k=1

ki 0

< E ak + Y ia- (a -'a
k=1 j=2

j=l j=1

Lemma 3.3 Let X and Y be real separable Hilbert spaces with inner products
denoted by < -,- >x and < ,. >y respectively. Then every 4 E HS(X, Y) can be
written in factored form as = 1 2 with -V £(Y) compact and (p2 e HS(X, Y).

Proof Let {Jx,} be an orthonormal basis for X and let {yi}1 be an orthonormal
basis for Y. If $4 e HS(X, Y) then it has a representation in the form of an infinite
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matrix 4.-* [ p[q I where Yij =< y , Obxj >y, and 1 00p2 < oo. Now for i = 1,2,...
i=1 j=1

00
set a1  E jo . The sequence {a,}= 1 is absolutely summable, so applying Lemma

j=l

3.2 we obtain sequences {hb}i= 1 and {cil, for which ai = bici, i = 1, 2,..., lim bi
100

0000 
00

0, and E Ic1 I = E c, < oo. Define V e L(Y) by (Ply= v < y, y >y yi,y fY,
i=1 i=I -1

and 2 C £(X,Y) by 1 2x = E < x, xj >x yi, x E X. Then (12 = ),

and, since limv '?=0and E E t j E ' - E
1-00 i=1 j=1 i="

it follows that 410 is compact and 2 e HS(X, Y).

Lemma 3.4

(a) For every 'P E -, lim IP,-4P,, -Dj = 0.

(b) For every 1P f V, lim IIP,1)P. - ¢Ilv = 0.

Proof (a). For - f 7-l we have

IP.'1P. - 01K < IP.OP. - P.OIH H + IP1"t -PIWI '(D1Pn - 4) 6 + I11' 4 - 'Il7

= 1(1)P)* - -"17 + IP.l - 4l1h
= IPD* - I.17 + IP.¢ - 17

where in the above estimate we have used the fact that P, f C(H) with jPn I < 1
and that IPnPIH < IPI II1j I'TI- for every T E X-. If we apply Lemma 3.3 with
X = Y = H to , * e7?" = HS(H, H), then we obtain 1) = 1)12, 01 * = (i")1 (1")2
with V , ()*) c £(H) compact and (qp*)2 e HS(H, H). It follows that

IP"1)* -"D j. = I(Pn - I)(*)()*)2j'U _< I(pn - I)(1*)lj (0*)2I,
and

JP.0-D 1 - Dlh: (P. - I4,'l 1,

which together with assumnption (3.1) and the fact that 1)V and (qD*)1 are compact
yield the desired result.

(b). For 4D e V = HS(V*, H) n HS(H, V) we have

jPn'DP- - DIHS(V.,H) < IP1P. - Pn4IHS(V.,H) + IPn'1 - DIHS(V.,H)
< IP.[ ItP. - 'IHS(V.,H) + IPflD - 4DIHS(V.,H)
< 5 P. - DIHS(V.,H) + IPn' - IIHS(V.,H).
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Now '1 e HS(V*, H) implies that t* f HS(H, V*) and that (-iPP)* =
P,* Ve HS(H, V*) where, recalling Lemma 3.1, P* = ,P,-y 1 is the adjoint of the

operator Pn considered as an element of C(V*). It follows that

(3.4) lPni'p - 'IHS(V*,H) ! IP*'* - D*IHS(H,Vo ) + PID - 4DIHS(V-,H)

Lemma 3.3 with X = H and Y = V* together with Lemma 3.1 imply that the first
term on the right hand side of the estimate (3.4) tends to zero as n -+ oo. Similarly,
Lemma 3.3 with X = V* and Y = H together with assumption (3.1) imply that
the second term tends to zero as n -+ 00 as well. A similar argument to the one
given above can be used to show that lim IPTiDPn - 4 IHS(H,V) = 0 and the lemma

n-Co
is proved.

The primary result of this paper is given in the following theorem.

Theorem 3.1 Let H1 c V be the unique solution to the equation (2.5) (equivalently
(2.3)) and for each n = 1,2,... let fl E itn be the umique solution to the approxi-
mating operator equation (3.3). Then lim JII,, - Hllv = 0.

Proof From the triangle inequality we obtain

Jiinj - nfllv < in - PIIPllv + IlPnPn - I1lv.

An application of Lemma 3.4(b) yields that the second term on the right and side
of the above estimate tends to zero as n -+ oo. As for the first term, we recall (2.4)
and consider the estimate

w irn, - P flpnl], < [A{nn - PnIfPn }, 1, - P,,fIP],*l

= [AH,* + Sn(n.) - AnI - B(nl), lnl - PIP.1R
+[AH - APnIIPn,I - PIIP.]7
+[B(II) - B(PIIP,), H, - PIIPnl]H
+[B(PnIlP ) - Bn(II), lIn - PnrIPn -H

= -O , n, - PnP.]i
+[A{fI - PnRHPn}, I - PIIP,]W
+[B(rH) - B(PllP), rH, - P.rIPn1]

-[Pnl3(Iln)P. - B(P.HP), n. - PnrlPn]lf

= [PoP., - E,,- P.P]
+[A{ll - PnrIPn }, rI. - P,,rlP.]
+[B(f) - B(PniIP.),ln - PnP.] ,
-[3(n) - 1(PlnP.), Iln - P.HPnI

< [P/OP - 0, I,, - P,,IIPn]7
+[A{ll - Pl P,,}, l,, - PnIIPn-
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+[B(n) - B(P.fl P),, n. - P.nm ]

where in the final estimate above we have applied assumption (2.1). Continuing we
find that

IIn. - P.II.112 < IlpI.p. -l011V. -P.lIPH v
+ IAIC(v,v.) 1Il - P.nlP.v IIn. - P.rIPIlv
+ lIB(nl) - B(P.nIP.)llv. iJn. - P.IllPJV,

or, recalling the continuous embedding of H into V*, that

IIn. - P.nfP.IJV <_ K IPr*)P - o1H + iAi,(Vv.) 111I - PIJnPiiv
+K iB(fl) - B(P.IIP.)i,.

Lemma 3.4 together with the continuity assumption on 3 imply

lim 11n. - PJIPlIv = 0

and the theorem is established.

4. AN EXAMPLE

In order to illustrate the application of our thoery we consider an operator alge-
braic Riccati equation arising in the design of an optimal feedback control law for a
one dimensional heat/diffusion equation. Let H, U = L 2 (0, 1), both endowed with

the usual inner product, (P, 0)= f0' p( 7 )b( 27)d 7, and consider the linear-quadratic
optimal control problem of finding ii e L 2 (0, 00; U) which minimizes the quadratic
performance index

J(u) = (Qx(t, .), x(t, .)) + r(u(t, .), u(t, .))dt

subject to the linear dynamical system
(4.1) 2- t 7 2 q)(,q u(,7),t>0 1<1
(4.2) x(t,0) =0, x(t,1) =0, t >0
(4.3) x(0,q) =x(77), 0 < q < 1,

where Q is a self-adjoint, nonnegative, and Hilbert-Schmidt operator from L 2(0, 1)
into L 2 (0, 1), a c L (0, 1), a(ri) > a > 0, a.e. 27 E (0, 1), b E R, and xO f L 2 (0, 1).
If we define C = {' e HS(L2 (0,1),L 2 (0,1)),i = , 4D > 0}, then Q F C and

(W) (7) = f0' q(77, ()W(C)d( with q E L 2((0, 1) x (0, 1)), q(27, () = q((, r), q(7, ) > 0,
a.e. (rq,() f (0, 1) x (0, 1).

Define V = H'(0,1) endowed with the standard inner product, < ,t >=

f' D o(7 )DO(r7 )dr7 and corresponding norm, " ]. It follows that V is densely, con-
tinuously, and compactly embedded in H, that * = H-'(0, 1), and that H is
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densely and continuously embedded in V*. Define the operator A c C(V, V*) by
(Ap, 0) = (aDp, DV'), for V,¢ e V. It follows that (AV,V) > ajIj 2 , V e V, and
that the restriction -A of the operator -A to the set Dom(A) = IV E V : AV f H}
(- H 2(0, 1) nl H1(0, 1) when a is suffciently smooth) is densely defined in H, nega-
tive, self-adjoint, and it is the infinitesimal generator of a uniformly exponentially
stable analytic semigroup, {T(t) : t > 0} of bounded, self-adjoint linear opeators on
H. The solution to the initial-boundary value problem (4.1)-(4.3) is given by

x(t) = T(t)x ° + j T(t - s)bu(s)ds, t > 0

where for each t > 0 x(t) = x(t,.) f H = L 2(0, 1) and u(t) = u(t,.) E U = L 2 (0, 1)
for almost every t > 0.

The solution to the optimal control problem (see [5]) is given in closed-loop linear
state feedback form by

i(t) = -(b/r)Hx(t), a.e. t > 0

where II is the unique nonnegative self-adjoint solution to the algebraic Riccati
equation

(4.4) A*H + HA + (b2/r)11 2 - Q.

It is clear that the existence-uniqueness and approximation theories presented above
apply with 0 = Q E C and 8(4) = (b2 /r)p 2 for 4 e C. It follows that there exists a
unique solution H e HS(L2 (O, 1), L 2(0, 1)) to the nonlinear operator equation (4.4)
with II = fI*, 11 > 0, and II E HS(L2(0, 1),H'(0, 1))fnHS(H-'(O, 1),L 2(0, 1)). Re-
calling that HS(L2 (O, 1), L 2 (0, 1)) is isometrically isomorphic to L 2 ((0, 1) x (0, 1)),
I E C implies that there exists 7r e L 2((0, 1) x (0,1)) with ir(7, ) = 7r((, r7) and

7r(q7, () > 0 for almost every (r7, () e (0, 1) x (0, 1) for which

= -(b/r)j 7r(77,()x(t,()d(,

for almost every rj e (0, 1) and t > 0.
We introduce linear spline based approximation. For each n=2,3,... let Hn

span {~4}' , ' where for j=1,2,...,n-1, p. denotes the jth standard linear spline func-

tion defined on the interval [0,1] with respect to the uniform mesh {0, 1/n, 2/n, ..., 11.
More precisely,

0 0 < r < j - '/n

nr7 -j + j'-1 < r j/n
V0n({) j + -n7 j/n<r<j+1/n

0 j+l1/n < l 5 l ,
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j=1,2,...,n-1. Let Pn : H --+ H, denote the orthogonal projection of H onto H,
with respect to the usual inner product on H = L 2 (0, 1) and define Galerkin ap-
proximations An e C(H,.) to A in the usual way. That is let An', = ,, where
for pn e Hn,On is the unique element in Hn which satisfies (A',., n)) (,,X n,),
Xn E H,. Set Q, = PQ E £(Hn).

Using well known approximation properties of linear interpolatory splines (see [7])
it is not difficult to argue that lim Pnp - 'pl = 0. V e HJ(0, 1) and consequently

that assumption (3.1) is satisfied. It follows therefore, from the theory presented
in section 3 above, that there exists a unique nonnegative self-adjoint operator
Hl E C(Hn) satisfying the algebraic Riccati equation in Hn given by

(4.5) A*lln + 1InA + (b2/r)HI2 = Q,.

Moreover, we have the Hilbert-Schmidt norm convergence of l,.P, to H as n -* c.
That is

(4.6) lim ]I,.P. - rI[HS(H,H) = 0.

We in fact also obtain that lim ]l,.Pn - IHs(HV) = 0 and that

lim 1IInP, - IIIHS(V',H) = 0.

From a computational point of view, since the basis elements VJ are not mu-
tually orthonormal, simply replacing the operators in the finite dimensional alge-
braic Riccati equation (4.5) with their corresponding matrix representations will
not lead to the usual symmetric matrix Riccati equation for which a variety of
computational solution techniques exist. Toward this end, for a linear opera-
tor Ln with domain and/or range in H,,, we denote its matrix representation

with respect to the basis {~j In} for H. by LN. Define On : [0,1] -- Rn' by( () 1 ( 2) 0 7). n-1 TOT

= ('n(7),'n(), " ' " ,'n (77))T and set MN = (n, n=

fO (n(T)dr7. It then follows that AN = M 1 (aDn,,D¢T ) with

A*N = M; 1 AT.NIN, and QN = M (Q, If we set QN = MNQN and

ftN = MNIIN, then lIN is the unique nonnegative self-adjoint solution to the
(n - 1) x (n - 1) matrix algebraic Riccati equation given by

(4.7) AT IN + IINAN + (b2 /r)fINM 1 IN = QN.

The approximating optimal control laws take the form

u.(t,27) = -(b/r) j 7rn(r, ()x(t, C)d(
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for almost every ? e (0, 1) and t > 0 where

7rn (17, )=n(r7)r M I fINM .W ( ,

f [0,1] x [0,1]. It follows from (4.6) that lim 7r, = 7r in L 2((O,1) x (0,1)) -

that is that

(4.8) lim f 70 f' In(r,)- 7r(77,)12 dcdr.

To illustrate we take a(tq) = a > 0, a constant, and let Q e HS(L2(O, 1), L2 (0, 1))
be the finite rank modal projection operator given by

= qk( ,tkkXtk, p E L 2 (0,1)

k=1

where v < oo, Ik(r7) = V2'sinkrtr, rq e [0,1], k = 1,2,...,v, and qk > 0, k =

1,2, ..., v. A somewhat tedious, but rather straight forward computation yields

(QN~ ~1: = 2qkb' 6j' , ij = 1, 2,..., n -1!ON),j ki k , ..
k=1

where

n _ -n 7r(e +1) 7re 7r(e -1)
6b= (kt ) - sin k n 2 sin k- + sink

k Ir2 fl n n

k = 1,2,...,v,e = 1,2,...,n - 1. Setting a = .25, b = 1.0, r = .01, v = 3,
and ql = q2 = q3 = 1.0, and using Schur-vector decomposition of the associated
Hamiltonian matrix (see [4]) to solve the matrix Riccati equation (4.7) for various
values of n we obtained the kernels, 7r,, plotted in the figures below. That the
convergence given in (4.8) above is achieved is immediately clear.



Figure 4.l1a: ir4 (77 , (77, 6) [0, 11 X [0, 1.

Figure 4.l1b: 7r8(, ~) ic [0, 1] x [0, 1]



Figure 4.1c: r16(?1, 0t, C) 6 [0, 11 X [0, 11.

Figure 4. 1d: ir 32( (, (77, () E (0, 11 X [0, 1.
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